166 research outputs found

    The cohort of the atomic bomb survivors: major basis of radiation safety regulations

    Get PDF
    Since 1950 about 87 000 A-bomb survivors from Hiroshima and Nagasaki have been monitored within the framework of the Life Span Study, to quantify radiation-induced late effects. In terms of incidence and mortality, a statistically significant excess was found for leukemia and solid tumors. In another major international effort, neutron and gamma radiation doses were estimated, for those survivors (Dosimetry System DS02). Both studies combined allow the deduction of risk coefficients that serve as a basis for international safety regulations. As an example, current results on all solid tumors combined suggest an excess relative risk of 0.47 per Sievert for an attained age of 70 years, for those who were exposed at an age of 30 years. After exposure to an effective dose of one Sievert the solid tumor mortality would thus be about 50% larger than that expected for a similar cohort not exposed to any ionizing radiation from the bombs

    On the feasibility to study inverse proximity effect in a single S/F bilayer by Polarized Neutron Reflectometry

    Full text link
    Here we report on a feasibility study aiming to explore the potential of Polarized Neutron Reflectometry (PNR) for detecting the inverse proximity effect in a single superconducting/ferromagnetic bilayer. Experiments, conducted on the V(40nm)/Fe(1nm) S/F bilayer, have shown that experimental spin asymmetry measured at T = 0.5TC is shifted towards higher Q values compared to the curve measured at T = 1.5TC. Such a shift can be described by the appearance in superconducting vanadium of magnetic sub-layer with thickness of 7 nm and magnetization of +0.8 kG.Comment: Changes in the 2nd version: small mistypes are corrected. Manuscript submitted to JETP let. 4 pages, 2 figure

    Depth profile of the ferromagnetic order in a YBa2_2Cu3_3O7_7 / La2/3_{2/3}Ca1/3_{1/3}MnO3_3 superlattice on a LSAT substrate: a polarized neutron reflectometry study

    Full text link
    Using polarized neutron reflectometry (PNR) we have investigated a YBa2Cu3O7(10nm)/La2/3Ca1/3MnO3(9nm)]10 (YBCO/LCMO) superlattice grown by pulsed laser deposition on a La0.3Sr0.7Al0.65Ta0.35O3 (LSAT) substrate. Due to the high structural quality of the superlattice and the substrate, the specular reflectivity signal extends with a high signal-to-background ratio beyond the fourth order superlattice Bragg peak. This allows us to obtain more detailed and reliable information about the magnetic depth profile than in previous PNR studies on similar superlattices that were partially impeded by problems related to the low temperature structural transitions of the SrTiO3 substrates. In agreement with the previous reports, our PNR data reveal a strong magnetic proximity effect showing that the depth profile of the magnetic potential differs significantly from the one of the nuclear potential that is given by the YBCO and LCMO layer thickness. We present fits of the PNR data using different simple block-like models for which either a ferromagnetic moment is induced on the YBCO side of the interfaces or the ferromagnetic order is suppressed on the LCMO side. We show that a good agreement with the PNR data and with the average magnetization as obtained from dc magnetization data can only be obtained with the latter model where a so-called depleted layer with a strongly suppressed ferromagnetic moment develops on the LCMO side of the interfaces. The models with an induced ferromagnetic moment on the YBCO side fail to reproduce the details of the higher order superlattice Bragg peaks and yield a wrong magnitude of the average magnetization. We also show that the PNR data are still consistent with the small, ferromagnetic Cu moment of 0.25muB that was previously identified with x-ray magnetic circular dichroism and x-ray resonant magnetic reflectometry measurements on the same superlattice.Comment: 11 pages, 7 figure

    Magnetic proximity effects in V/Fe superconductor/ferromagnet single bilayer revealed by waveguide-enhanced polarized neutron reflectometry

    Full text link
    Polarized neutron reflectometry is used to study the magnetic proximity effect in a superconductor/ferromagnet (SC/FM) system of composition Cu(32nm)/V(40nm)/Fe(1nm)/MgO. In contrast to previous studies, here a single SC/FM bilayer, is studied and multilayer artefacts are excluded. The necessary signal enhancement is achieved by waveguide resonance, i.e. preparing the V(40nm)/Fe(1nm) SC/FM bilayer sandwiched by the highly reflective MgO substrate and Cu top layer, respectively . A new magnetic state of the system was observed at temperatures below 0.7 TC. manifested in a systematic change in the height and width of the waveguide resonance peak. Upon increasing the temperature from 0.7 TC to TC, a gradual decay of this state is observed, accompanied by a 5% growth of the diffuse scattering. According to theoretical studies, such behavior is the result of the magnetic proximity effect. Due to the presence of the thin FM layer the superconducting electrons are polarized and, as a result, near the SC/FM interface an additional magnetic layer appears in the SC with thickness comparable to ksi, the coherence length of the superconductor.Comment: Submitted to the Journal of Superconductivity and Novel Magnetism. 11 pages, 6 figures

    Feasibility of study magnetic proximity effects in bilayer "superconductor/ferromagnet" using waveguide-enhanced Polarized Neutron Reflectometry

    Full text link
    A resonant enhancement of the neutron standing waves is proposed to use in order to increase the magnetic neutron scattering from a "superconductor/ferromagnet"(S/F) bilayer. The model calculations show that usage of this effect allows to increase the magnetic scattering intensity by factor of hundreds. Aspects related to the growth procedure (order of deposition, roughness of the layers etc) as well as experimental conditions (resolution, polarization of the neutron beam, background etc) are also discussed. Collected experimental data for the S/F heterostructure Cu(32nm)/V(40nm)/Fe(1nm)/MgO confirmed the presence of a resonant 60-fold amplification of the magnetic scattering.Comment: The manuscript of the article submitted to Crysstalography Reports. 23 pages, 5 figure

    Magnetic Proximity Effect in YBa₂Cu₃O₇/La<sub>2/3</sub>Ca<sub>1/3</sub>MnO₃ and YBa₂Cu₃O₇/LaMnO₃₊ Superlattices

    Get PDF
    Using neutron reflectometry and resonant x-ray techniques we studied the magnetic proximity effect (MPE) in superlattices composed of superconducting YBa₂Cu₃O₇ and ferromagnetic-metallic La0.67Ca0.33MnO₃ or ferromagnetic-insulating LaMnO₃₊. We find that the MPE strongly depends on the electronic state of the manganite layers, being pronounced for the ferromagnetic-metallic La0.67Ca0.33MnO₃ and almost absent for ferromagnetic-insulating LaMnO₃₊. We also detail the change of the magnetic depth profile due to the MPE and provide evidence for its intrinsic nature

    Comparison of codes assessing galactic cosmic radiation exposure of aircraft crew

    Get PDF
    The assessment of the exposure to cosmic radiation onboard aircraft is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher onboard aircraft than at ground level and its intensity depends on the solar activity. The dose is usually estimated using codes validated by the experimental data. In this paper, a comparison of various codes is presented, some of them are used routinely, to assess the dose received by the aircraft crew caused by the galactic cosmic radiation. Results are provided for periods close to solar maximum and minimum and for selected flights covering major commercial routes in the world. The overall agreement between the codes, particularly for those routinely used for aircraft crew dosimetry, was better than ±20 % from the median in all but two cases. The agreement within the codes is considered to be fully satisfactory for radiation protection purpose
    • …
    corecore